Surface Modified Alloy Resource of Ti based Implant with Electromagnetic Structures
This research is funded by a grant from the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2020-0404, within PNCDI III
JOURNAL PUBLICATION
Assistive devices are becoming increasingly popular for physically disabled persons suffering tetraplegia and spinal cord injuries. Intraoral tongue drive system (iTDS) is one of the most feasible and non-invasive assistive technology (AT), which utilises the transferring and inferring of user intentions through different tongue gestures. Wireless transferring is of prime importance and requires a suitable design of the intra-oral antenna. In this paper, a compact circularly polarized differential intra-oral antenna is designed, and its performance is analysed within heterogeneous multilayer mouth and head models. It works at 2.4 GHz in the Industrial, Scientific, and Medical (ISM) band. The footprint of the differential antenna prototype is 0.271 λg × 0.271 λg × 0.015 λg. It is achieved using two pairs of spiral segments loaded in diagonal form near the edges of the central rotated square slot and a high dielectric constant substrate. Its spiral-slotted geometry further provides the desired swirling and miniaturization at the desired frequency band for both mouth scenarios. Additionally, corner triangular slits on the radiating patch assist in tuning the axial ratio (< 3 dB) in the desired ISM band. To validate the performance of the proposed in-mouth antenna, the measurement was carried out using the minced pork and the saline solution for closed and opened mouth cases, respectively. The measured − 10 dB impedance bandwidth and peak gain values in the minced pork are from 2.28 to 2.53 GHz (10.39%) and − 18.17 dBi, respectively, and in the saline solution, are from 2.3 to 2.54 GHz (9.92%) and − 15.47 dBi, respectively. Further, the specific absorption rate (SAR) is estimated, and the data communication link is computed with and without a balun loss. This confirms that the proposed differential intraoral antenna can establish direct interfacing at the RF front end of the intraoral tongue drive system.
implanted antenna,biocompatibility
2023-06-19
10.1038/s41598-023-36717-w
Ahlawat, S., Kanaujia, B.K., Rambabu, K. et al. Circularly polarized differential intra-oral antenna design validation and characterization for tongue drive system. Sci Rep 13, 9935 (2023). https://doi.org/10.1038/s41598-023-36717-w